الاثنين، 23 ديسمبر 2013

نظرية فيثاغورس

مبرهنة فيثاغورس

من ويكيبيديا، الموسوعة الحرة
اذهب إلى: تصفح، ‏ ابحث
الصيغة الهندسية لمبرهنة فيثاغورس
مبرهنة فيثاغورس هي مبرهنة في الهندسة الإقليدية، تقول أنه في أي مثلث قائم الزاوية يكون مجموع مربعي طولي الضلعين المحاذيين للزاوية القائمة يساوي مربع طول الوتر. سميت هذه المبرهنة على العالم فيثاغورس الذي كان رياضيا، وفيلسوفا، وعالم فلك في اليونان القديمة.


المبرهنة[عدل]

مبرهنة فيثاغورس المباشرة[عدل]

وهي الشكل الأكثر شهرة لمبرهنة فيثاغورس:
« في مثلث قائم الزاوية، مربع طول الوتر يساوي مجموع مربعي طولي الضلعين المحاذيين للزاوية القائمة. »
Rtriangle.svg
في مثلث ABC قائم الزاوية في C، أي أن [AB] هو الوتر، نضع AB=c و AC=b و BC=a. لدينا:
BC^2+AC^2=AB^2\,
أو
a^2+b^2=c^2\,
تمكن مبرهنة فيثاغورس من حساب طول أحد أضلاع مثلث قائم الزاوية بمعرفة طولي الضلعين الآخرين. مثلا: إذا كان b=3 و a=4 فإن
a^2+b^2=3^2+4^2=25=c^2\,
ومنه c = 5\,.
أي ثلاثة أعداد صحيحة تمثل أطوال أضلاع مثلث قائم الزاوية -مثل (3، 4، 5)- تُكون ثلاثي فيثاغورسي.

مبرهنة فيثاغورس العكسية[عدل]

نص مبرهنة فيثاغورس العكسية (العبارة 47 من الجزء الأول من كتاب العناصر لإقليدس):
« في مثلث، إذا كان مربع طول أطول ضلع يساوي مجموع مربعي طولي الضلعين الآخرين، فإن هذا المثلث قائم الزاوية. الزاوية القائمة هي الزاوية المقابلة لأطول ضلع، والضلع الأطول هو الوتر. »
مبرهنة فيثاغورس هي خاصية مميزة للمثلث القائم الزاوية. بتعبير آخر:
« في مثلث ABC، إذا كان AC²+BC²=AB² فإن هذا المثلث قائم الزاوية في C.».

تاريخ المبرهنة[عدل]

عرفت خاصية فيثاغورس في العصور القديمة، والدلائل على ذلك ما زالت موجودة حتى الآن. يكفي مثلا أن نلاحظ الحبل ذا ثلاث عشرة عقدة الذي كان المسّاحون المصريون يستعملونه والذي نجد له صورا في عدة تصاوير للأعمال الزراعية. يسمح هذا الحبل، علاوة على قياس المسافات، بإنشاء زوايا قائمة دون الحاجة إلى جيب التمام، إذ تسمح العقد الثلاث عشرة (والمسافات الاثنتي عشرة الفاصلة بين العقد) من إنشاء مثلث أبعاده (5 ،4 ،3)، مثلث يتضح أنه قائم الزاوية. ظل هذا الحبل أداة هندسية طيلة العصور الوسطى.
أقدم تمثيل لمثلوثات فيثاغورس (مثلث قائم الزاوية وأطوال أضلاعه أعداد صحيحة طبيعية) نجده في الميغاليثات (2500 سنة قبل الميلاد). كما أظهرت آثار البابليين (لوحة Plimpton، حوالي سنة 1800 قبل الميلاد) أنه قبل ظهور فيثاغورس بأكثر من 1000 سنة، عرف المهندسون وجود مثلوثات فيثاغورس.
لكن بين اكتشاف الخاصية «نلاحظ أن بعض المثلثات القائمة الزاوية تحقق هذه الخاصية»، تعميمها «يبدو أن كل المثلثات القائمة الزاوية تحقق هذه الخاصية» وإثباتها «كل المثلثات القائمة الزاوية (فقط) في المستوى الإقليدي تحقق هذه الخاصية» عدة أجيال.
برهان بصري لمثلث أطوال أضلاعه (3، 4، 5) في كتاب Chou Pei Suan Ching (القرن الثاني-القرن الخامس قبل الميلاد)
ندرة الدلائل التاريخية تجعلنا غير قادرين على نسب المبرهنة إلى فيثاغورس بشكل قاطع، مع أننا على يقين بأنه صاحبها. أول برهان مكتوب نجده في كتاب العناصر لإقليدس بالصيغة التالية:
« في المثلثات القائمة الزاوية، مربع طول الضلع المقابل للزاوية القائمة يساوي مجموع مربعي طولي الضلعين الآخرين. »
مع صيغتها العكسية: « إذا كان مربع طول ضلع في مثلث يساوي مجموع مربعي طولي الضلعين الآخرين، فإن الزاوية المحصورة بين هذين الضلعين قائمة. »
ومع ذلك، فتعليقات Proclus على كتاب العناصر لإقليدس (حوالي 400 سنة بعد الميلاد) تشير إلى أن إقليدس لم يقم سوى بإعادة تدوين برهان قديم نسبه Proclus إلى فيثاغورس.
إذن، يمكننا أن نؤرخ البرهان على هذه الخاصية ما بين القرن الثالث والقرن السادس قبل الميلاد. يحكى أنه في تلك الفترة اكتشفت الأعداد اللاجذرية. بالفعل، يمكن بسهولة إنشاء مثلث قائم الزاوية ومتساوي الساقين طول أحدهما 1، فيكون مربع طول الوتر هو 2. برهان بسيط أيام فيثاغورس يثبت أن العدد 2 ليس مربعا لعدد جذري. يقال أن هذا الاكتشاف تم إبقاؤه سرا من طرف المدرسة الفيثاغورسية تحت تهديد بالقتل.
إلى جانب هذه الاكتشافات، يبدو أن هذه المبرهنة عرفت في الصين أيضا. نجد إشارة إلى وجود هذه المبرهنة في واحد من أقدم المؤلفات الصينية في الرياضيات، كتاب Zhoubi suanjing. هذا المؤلف، كتب على الأغلب في Han Dynasty (أعظم الفترات في تاريخ الصين)، (206 قبل الميلاد، 220 سنة بعد الميلاد) يضم التقنيات المستعملة في فترة Zhou Dynasty. (القرن العاشر قبل الميلاد، 256 قبل الميلاد). نجد برهان هذه الخاصية، التي تحمل في الصين اسم مبرهنة جوجو Gougu (القاعدة والارتفاع)، في كتاب Jiuzhang suanshu (الفصول التسعة في فن الرياضيات، 100 سنة قبل الميلاد، 50 سنة بعده)، برهان مختلف كليا عن برهان إقليدس.
كما نجد في الهند برهانا عدديا للخاصية يعود إلى القرن الثالث قبل الميلاد (برهان باستعمال أعداد خاصة، لكن يمكن تعميمه بسهولة).
رغم أنها خاصية هندسية، إلا أنها أخذت منحى حسابيا عند البحث عن جميع مثلوثات أعداد صحيحة طبيعية تمثل أطوال أضلاع مثلث قائم الزاوية: أي مثلوثات فيثاغورس. هذا البحث فتح الباب لبحث آخر: البحث عن المثلوثات التي تحقق a^n + b^n = c^n، بحث قاد إلى مظنونة فيرما التي تم حلها سنة 1994 على يد الرياضي (بالإنكليزية: Andrew Wiles).
توجد في الحقيقة العديد من البراهين على هذه الخاصية، مثل برهان إقليدس، وبرهان الصينيين، مرورا ببرهان الهنود، وبرهان دا فينشي وحتى برهان الرئيس الأمريكي (بالإنكليزية: James Abram Garfield). كما لا يفوتنا ذكر الكاشي الذي عمم هذه المبرهنة على كل المثلثات: مبرهنة الكاشي.

براهين[عدل]

بلا شك، هذه المبرهنة لديها أكبر عدد معروف من الإثباتات (كما هو الحال بالنسبة لخاصية Quadratic reciprocity). ها هي بعض منها:

برهان إقليدس[عدل]

PPythagore2.png
قبل البرهنة على خاصية فيثاغورس، يجب إثبات عبارتين. العبارة الأولى التي يجب إثباتها (العبارة 35 من الجزء الأول من كتاب العناصر) هي تساوي مساحتي متوازيي أضلاع لهما نفس القاعدة ونفس الارتفاع:
« متوازيات الأضلاع التي لها قاعدة مشتركة، ومحصورة بين نفس المستقيمين المتوازيين، لها نفس المساحة. »
لنعتبر متوازيي الأضلاع ABCD و BCFE، لديهما قاعدة مشتركة [BC]، ومحصوران بين المتوازيين (BC) و(AF)، لاحظ أن AD=BC (لأنهما قاعدتا متوازي الأضلاع ABCD)، و BC=EF (لأنهما قاعدتا متوازي الأضلاع BCFE)، وبالتالي AD=EF.
توجد ثلاثة حالات فقط (مبينة في الشكل جانبه) لموضع النقطة E بالنسبة إلى D : يمكن أن توجد E على يسار D، منطبقة على D أو على يمين D. سندرس كل حالة:
1. إذا كانت E على يسار D فإن [ED] مشتركة بين كل من [AD] و[EF]، ومنه نستطيع التحقق من أن المسافتين AD و EF متساويتين. لاحظ أن الضلعين [AB] و[DC] متقايسان (لأنهما قاعدتان متقابلتان في متوازي الأضلاع ABCD)، والنقط D، E، A و F مستقيمية، الزاويتان [\widehat{BAE}] و[\widehat{CDF}] متقايستان. كنتيجة لهذا فالمثلثان BAE و CDF متقايسان، لأن لهما ضلعان متقايسان والزاويتان المحصورتان متقايستان. إذن، متوازيي الأضلاع ABCD و CBEF ليسا سوى ترتيبين مختلفين من شبه المنحرف BEDC والمثلث BAE (أو CDF).
2. إذا كانت E منطبقة على D، سنجد بطريقة مشابهة أن المثلثين BAE و CDF متقايسان، وأنه من الممكن الحصول على متوازيي الأضلاع ABCD و BCFE بإضافة المثلث BAE (أو CDF) إلى المثلث المشترك BCD.
3. إذا كانت E على يمين D، لدينا AD=EF، وبإضافة DE لكل منهما نجد أن AE=DF. وبطريقة مشابهة لتلك التي إستعملناها في 1 و 2، يمكن أن نبين أن المثلثين BAE و CDF، وأيضا شبهي المنحرف BADG و CGEF، متقايسان. إذن من الواضح أنه يمكن الحصول على متوازيي الأضلاع ABCD و CBEF عن طريق إضافة المثلث المشترك BCG إلى شبه المنحرف BADG (أو CGEF).
استبدال متوازي أضلاع بمتوازي أضلاع آخر له نفس القاعدة والارتفاع يعرف في الرياضيات باسم القص. هذا الأخير مهم جدا في إثبات العبارة التالية:
PPythagore3.png
« إذا كان لمتوازي أضلاع ولمثلث نفس القاعدة، ومحصورين بين مستقيمين متوازيين، فإن مساحة متوازي الأضلاع هي ضعف مساحة المثلث. »
لنعتبر متوازي أضلاع ABCD، ولتكن E نقطة من نصف المستقيم (AD] ولا تنتمي إلى القطعة [AD]. نريد إثبات أن مساحة ABCD هي ضعف مساحة BEC. بعد رسم القطر [AC]، نلاحظ أن مساحة ABCD هي ضعف مساحة ABC. ولدينا مساحة ABC تساوي مساحة BEC (لأن لهم نفس القاعدة). إذن ضعف مساحة BEC هي ضعف مساحة ABC، أي ABCD. ومنه مساحة ABCD هي ضعف مساحة BEC المثلث.
PEuclide.png
نستطيع الآن متابعة البرهان:
نعتبر مثلثا ABC قائم الزاوية في A. لتكن ABFG ،ACIH و BCED مربعات الأضلاع AB ،AC و BC على التوالي. لتكن J نقطة تقاطع (BC) و(AK). نريد إثبات أن مساحة BCED تساوي مجموع مساحتي ABFG و ACIH. يمكننا هذا عن طريق إثبات أن مساحة المربع ABFG تساوي مساحة المستطيل BJKD، وأن مساحة المربع ACIH تساوي مساحة المستطيل CEKJ.
لإثبات المتساوية الأولى، يمكن أن نلاحظ أن المسافتين FB و BC تساويان AB و BD على التوالي. لأن الزاويتان [\widehat{ABF}] و[\widehat{CBD}] متقايستان، والزاويتان [\widehat{FBC}] (لاحظ أن \widehat{FBC}=\widehat{FBA}+\widehat{ABC}) و\widehat{ABD} (لاحظ أن \widehat{ABD}=\widehat{ABC}+\widehat{CBD}) متقايستان. كنتيجة، لدينا المثلثان FBC و ABD متقايسان. لاحظ أيضا أنه حسب العبارة XLI، مساحة المربع ABFG هي ضعف مساحة المثلث FBC وأن مساحة المستطيل BJKD هي ضعف مساحة المثلث ABD. بما أن المثلثين ABD و FBC متقايسان، فإن مساحة ABFG تساوي مساحة BJKD.
نحصل على المتساوية الثانية بطريقة مشابهة: بملاحظة أن IC و CB يساويان AC و CE على التوالي، وأن الزاوية [\widehat{ICB}] تقايس الزاوية [\widehat{ACE}]، نحصل على أن المثلثين ICB و ACE متقايسان. وعلما أن مساحة المربع ACIH هي ضعف مساحة المثلث ICB وأن مساحة المستطيل CEKJ هي ضعف مساحة ACE، وبما أن المثلثين ICB و ACE متقايسان، فإن مساحة ACIH تساوي مساحة CEKJ.
وبالتالي، مساحة BCED تساوي مساحة مجموع مساحتي BJKD و CEKJ، أي مجموع مساحتي ABFG و ACIH. وتكون مبرهنة فيثاغورس حالة خاصة لمبرهنة كليرو.

برهان جوجو[عدل]

لغز جوجو
تمت إعادة صياغة مبرهنة جوجو Gougu انطلاقا من تعليقات وملاحظات الرياضي الصيني Liu Hui (القرن الثالث بعد الميلاد) على كتاب « الفصول التسعة في فن الرياضيات » (206 قبل الميلاد، 220 بعده) وعلى كتاب Zhoubi Suanjian « ظل الدوائر، كتاب في Calculus » (كتاب في علم الفلك).
هذا البرهان يعتمد على مبدأ لعبة اللغز Puzzle: مساحتان متساويتان بعد تقطيع وتركيب. يذكر أن إقليدس استعمل نفس المبدأ (القص) تقريبا. في الشكل جانبه، المثلث القائم الزاوية مرسوم بلون غامق، مربع أطول ضلع من ضلعي الزاوية القائمة رسم خارج المثلث، بينما نقوم بالعكس بالنسبة للضلعين الآخرين.
المثلث الأحمر يقايس المثلث البدئي. طول أطول ضلع من ضلعي الزاوية القائمة في المثلث الأصفر يساوي طول أصغر ضلع في المثلث البدئي، وزوايا هذين المثلثين متقايسة. طول أطول ضلع من ضلعي الزاوية القائمة في المثلث الأزرق يساوي فرق طولي ضلعي الزاوية القائمة للمثلث البدئي وزواياهما متقايسة أيضا.

البرهنة باستعمال الجداء السلمي (المتجهات)[عدل]

ليكن ABC مثلثا قائم الزاوية في A
\overrightarrow{CB}=\overrightarrow{AB}-\overrightarrow{AC}
\overrightarrow{CB}^2=(\overrightarrow{AB}-\overrightarrow{AC})^2
CB^2=AB^2+AC^2-2.\overrightarrow{AB}.\overrightarrow{AC}
بما أن ABC قائم الزاوية في A فإن \overrightarrow{AB}.\overrightarrow{AC}=0
ومنه BC^2=AB^2+AC^2

برهان حديث[عدل]

Pythagoralg.png لنعتبر مثلثا قائم الزاوية حيث قياسات أضلاعه هي b ،a و c. نقوم بنسخ المثلث ثلاث مرات بحيث يشكل كل ضلع طوله a مستقيما مع ضلع طوله b لمثلث آخر. نحصل في الأخير على مربع طول ضلعه a+b، كما في الصورة.
لنحسب مساحة المربع المحدد بالأضلاع ذات الطول c. بالطبع المساحة هي c²، وتساوي أيضا فرق مساحة المربع الكبير ذو الضلع a+b ومجموع مساحات المثلثات الأربع. مساحة المربع الكبير هي ²(a+b) لأن طول ضلعه هو a+b. ومجموع مساحات المثلثات هي أربع مرات مساحة مثلث واحد، أي 4(ab/2)، إذن الفرق هو (a+b)²-4(ab/2) بالتبسيط a²+b²+2ab-2ab أي a²+b². بهذا نكون قد برهنا على أن مساحة المربع ذو الضلع c تساوي a²+b²، أي a²+b²=c². Pythagorean proof.svg
توجد طرق عديدة أخرى لإثبات مبرهنة فيثاغورس، حتى الرئيس الأمريكي الواحد والعشرون جيمس جارفيلد (بالإنكليزية: James Garfield) برهن، بطريقة قريبة من الطريقة السابقة، على مبرهنة فيثاغورس.

أشكال أخرى للمبرهنة[عدل]

استلزامها المضاد للعكس[عدل]

نص الاستلزام المضاد للعكس:
« إذا كانت أطوال أضلاع مثلث ABC تحقق BC^2 \ne AB^2+AC^2\,\! فإن المثلث ABC ليس قائما في النقطة A. »
رغم أن الاستلزام المضاد للعكس يكافئ منطقيا المبرهنة المباشرة، إلا أن استعماليهما مختلفان: فمبرهنة فيثاغورس المباشرة تستعمل لحساب طول ضلع مثلث قائم الزاوية بدلالة طولي الضلعين الآخرين، في حين أن استلزامها المضاد للعكس يستعمل لإثبات كون مثلث (قياسات أضلاعه معلومة) ليس قائم الزاوية.

الاستلزام المضاد للعكس للخاصية العكسية[عدل]

يقول ما يلي: « إذا كان المثلث ABC ليس قائم الزاوية في A فإن BC^2 \ne AB^2+AC^2\,\! »

تعميم على أشكال هندسية أخرى غير المربعات[عدل]

مبرهنة الهلالين
عمم إقليدس مبرهنة فيثاغورس في كتابه العناصر (العبارة 31، الجزء VI من كتاب العناصر):
« في المثلثات القائمة الزاوية، مساحة شكل مرسوم على الوتر، يساوي مجموع مساحتي الشكلين المشابهين له المرسومين على ضلعي الزاوية القائمة. »
بتعبير آخر: « إذا أنشأنا أشكالا متشابهة على أضلاع مثلث قائم الزاوية، فإن مساحتي الشكلين الصغيرين تساوي مساحة الشكل الكبير. »
هذه الخاصية تسمح لنا بالبرهنة على أن مساحة مثلث تساوي مجموع مساحتي الهلالين المرسومين على ضلعي الزاوية القائمة: مبرهنة الهلالين.

استعمالاتها[عدل]

 \sqrt{(x_b-x_a)^2 + (y_b-y_a)^2}
إذا كانت (x_b, y_a) إحداثيتا نقطة C في نفس المعلم، فإن المثلث ACB قائم الزاوية في C. المسافتان CA و CB معلومتان:
CA= |x_b - x_a|
CB = |y_b - y_a|
بينما تمثل المسافة AB طول وتر المثلث ACB.
 \sqrt{\sum_{k=1}^{k=n}{(x_k-y_k)^2}}
  • تعمم مبرهنة فيثاغورس على التبسيطات ذات الأبعاد الكبيرة. إذا كان لرباعي أوجه ركن قائم (ركن من مكعب)، فإن مربع مساحة الوجه المقابل للركن، يساوي مجموع مربعات مساحات الأوجه الثلاثة الأخرى. تعرف هذه المبرهنة أيضا باسم مبرهنة

الأحد، 22 ديسمبر 2013

مساحات بعض الاشكال الهندسية اشكالها ومحيطها

 المربع:
- محيط المربع = الضلع × 4
- ضلع المربع = المحيط ÷ 4
- مساحة المربع = الضلع × الضلع

* المعين:
- محيط المعين = الضلع × 4
- ضلع المعين = المحيط ÷ 4
- مساحة المعين = (القطر الكبير×القطر الصغير) ÷ 2
- القطر الكير= (المساحة × 2) ÷ القطر الصغير
- القطر الصغير= (المساحة × 2) ÷ القطر الكبير

* متوازي الأضلاع:
- محيط متوازي الأضلاع = (القاعدة الساق) × 2
- قاعدة متوازي الأضلاع = ( المحيط ÷ 2) – الساق
- ساق متوازي الأضلاع = (المحيط ÷ 2 ) – القاعدة
- مساحة متوازي الأضلاع = القاعدة × الارتفاع
- قاعدة متوازي الأضلاع = المساحة ÷ الارتفاع
- ارتفاع متوازي الأضلاع = المساحة ÷ القاعدة

* المستطيل:
- محيط المستطيل = (الطول العرض) × 2
- طول المستطيل = (المحيط÷ 2) – العرض
- عرض المستطيل = (المحيط÷ 2) – الطول
- مساحة المستطيل = الطول ×2
- طول المستطيل = المساحة ÷ العرض
- عرض المستطيل = المساحة ÷ الطول

* شبه المنحرف:
- مساحة شبه المنحرف = ](القاعدة الكبرى القاعدة الصغرى) ×h [ ÷ 2
- ارتفاع شبه المنحرف = (المساحة × 2) .... قياس مجموع القاعدتين
- قياس مجموع القاعدتين = (2×المساحة) ÷ الارتفاع
- مجموع القاعدتين = القاعدة الكبرى القاعدة الصغرى
- القاعدة الصغرى = مجموع القاعدتين - القاعدة الكبرى
- القاعدة الكبرى = مجموع القاعدتين – القاعدة الصغرى

* المثـلـث:
- مساحة المثلث = (القاعدة × الارتفاع) ÷ 2
- قاعدة المثلث = (المساحة × 2) ÷ الارتفاع
- ارتفاع المثلث = (المساحة × 2) ÷ القاعدة

* سلم الخرائط والتصاميم:
- حساب البعد الحقيقي= البعد المصغر×مقام السلم
- حساب البعد المصغر= البعد الحقيقي÷مقام السلم
- حساب سلم التصميم = البعد الحقيقي ÷ البعد المصغر

* الدائرة والقرص:
- محيط الدائرة = القطر × 3.14 (P=3.14 )
- محيط الدائرة = الشعاع × 2×3.14
- قياس قطر الدائرة = المحيط ÷3.14
- شعاع الدائرة = القطر ÷ 2
- شعاع الدائرة = المحيط ÷ ( 2÷ 3.14 )
- قطر الدائرة = الشعاع × 2
- مساحة القرص = (الشعاع × الشعاع) ....... 3.14
- الشعاع × الشعاع = مساحة القرص ÷3.14

* متوازي المستطيلات:
- المساحة الجانبية = محيط القاعة × الارتفاع
- المساحة الكلية = المساحة الجانبية مساحة القاعدتين
- مساحة القاعدتين = (الطول × العرض) × 2
- حجم متوازي المستطيلات = الطول × العرض × الارتفاع

* المكعب:
- المساحة الكلية = مساحة القاعدة × 6
- حجم المكعب = الحرف × الحرف × الحرف

* الاسطوانة:
- المساحة الكلية = المساحة الجانبية مساحة القاعدتين
- المساحة الكلية = ( محيط القاعدة × h) [(الشعاع × الشعاع)×...] × 2
- الحجم = مساحة القاعدة × الارتفاع
- مساحة القاعدة = الحجم ÷ الارتفاع
- الارتفاع = الحجم ...... مساحة القاعدة

* الموشور القائم:
- الحجم = مساحة القاعدة ÷ الارتفاع
- المساحة الجانبية = محيط القاعدة × الارتفاع
- الكتلة = الكتلة الحجمية × الحجم
- الحجم = الكتلة ÷ الكتلة الحجمية
- الكتلة الحجمية = الكتلة ÷ الحجم

المعادلات التفاضلية

في الرياضيات, المعادلة التفاضلية هي معادلة تحوي مشتقات وتفاضلات لبعض الدوال الرياضية وتظهر فيها بشكل متغيرات المعادلة. ويكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقاتها هذه المعادلات. تبرز المعادلات التفاضلية بشكل كبير في تطبيقات الفيزياء والكيمياء، وحتى النماذج الرياضية المتعلقة بالعمليات الحيوية والاجتماعية والاقتصادية.
تعرف رتبة المعادلة التفاضلية على أنها أعلى رتبة لمشتق موجود في هذه المعادلة : فإذا حوت المعادلة مشتق أول ومشتق ثان فقط تعتبر من الرتبة الثانية... وهكذا.
المعادلات التفاضلية من الرتبة الأولى تحتوي على مشتقات أولي فقط.
وتعرف درجة المعادلة : بأنها الأس (القوة) التي رفع إليها أعلى تفاضل في المعادلة.


طرق حل المعادلات التفاضلية[عدل]

توجد طرق عديدة لحل المعادلات التفاضلية منها:
  • بعض الطرق المستخدمة لحل المعادلات التفاضلية من الرتبةالأولى:
  1. الفصل : و ذلك بفصل المتغيرات x,dx في جهة و y,dy في جهة أخرى في جانبي المعادلة و من ثم القيام بمكاملة الطرفين لتحصل على حل على شكل دالة عادية y=f(x)
  2. التعويض
  3. المعادلات الخطية
  4. برنولي
  • بعض الطرق المستخدمة لحل المعادلات التفاضلية من الرتبة n :
  1. اختزال الرتبة.
  2. تحديد المعاملات.
  3. مبادلة المتغيرات
  4. طريقة كوشي-أويلر لحل المعادلات التي فيها رتبة المشتقة هو نفسه أس معاملها
  5. طريقة المتتابعات الأسية
ويوجد أكثر من أسلوب للحل العددي وكذلك التحليلي. كما توجد معادلات مشهورة مثل معادلات لابلاس وبرنولي وغيرهم.

درجة المعادلة التفاضلية[عدل]

تتحدد درجة المعادلة التفاضلية حسب أس المشتق ذو الرتبة الأعلى. مثلا إذا كانت المعادلة التفاضلية من الرتبة الثالثة، أي أن أعلى تفاضل فيها هو التفاضل الثالث، فدرجة المعادلة تتحدد حسب أس هذا التفاضل، فإذا كان مرفوعا للأس 5 مثلا تكون المعادلة من الدرجة الخامسة، وهكذا.

أنواع المعادلات التفاضلية[عدل]

العادية والجزئية[عدل]

يمكن تقسيم المعادلات التفاضلية إلى قسمين :

الخطية وغير الخطية[عدل]

كل من المعادلات التفاضلية العادية والجزئية يمكن أن تصنف إلى خطية وغير خطية. وتكون المعادلة التفاضلية خطية بشرطين :
  1. إذا كانت معاملات المتغير التابع والمشتقات فيها دوال في المتغير المستقل فقط أو ثوابت.
  2. إذا كان المتغير التابع والمشتقات غير مرفوعة لأسس، أي كلها من الدرجة الأولى.
وتكون غير خطية فيما عدا ذلك.
كل معادلة تفاضلية خطية هي من الدرجة الأولى، بينما ليست كل المعادلات التفاضلية من الدرجة الأولى هي خطية، لأن الدرجة تتحدد حسب أس التفاضل الأعلى، ومن الممكن أن تكون التفاضلات الأقل مرفوعة لأسس غير الواحد دون أن يؤثر ذلك على الدرجة، وهذا يخل بشرط المعادلة الخطية.
معادلة برنولي معادلة من الرتبة الأولى والدرجة الأولى وليست معادلة خطية: n≠1  y'+ a(x)y = b(x)y^n\,

أمثلة[عدل]

معادلات تفاضلية بارزة[عدل]

في الفيزياء والهندسة[عدل]



القسمة في الرياضيات

في الرياضيات، وبالتحديد في الحسابيات الابتدائية، القسمة هي العملية الحسابية الرابعة بعد الجمع والطرح والضرب. وتشتق القسمة من تقسيم وهو تجزيئ الشئ إلى أجزاء صغيرة أوتوزيعه على مجموعة من الأشياء. القسمة هي إذن توزيع بالتساوي. يُرمز إلى القسمة بالعلامة ÷. إذا كان جداء b و c يساوي a, أي
a = b \times c \,
حيث b يختلف عن الصفر, فإن قسمة a على b تساوي c, وتُكتب على الشكل التالي:
c = a \div b \,
على سبيل المثال،
2 = 3 \div 6 \,
بما أن
6 = 3 \times 2 \,.
في التعبير c = a \div b \,، يسمى a مقسوما أو بسطا، ويسمى b مقسوما عليه أو مقاما, بينما يسمى c خارج القسمة أو ناتج القسمة. يتم وضعه بعد علامة التساوي =.
كما لعملية الضرب علامة (×) ولعملية الجمع علامة (+) ولعملية الطرح علامة (-) فإن لعملية القسمة علامة وهى (÷) وتقرأ على (كحرف الجر على بالضبط) وهى التي تفصل بين المقسوم والمقسوم عليه.



الرموز المستعملة[عدل]

عادة ما يُشار إلى عملية القسمة في الجبر وفي العلوم بواسطة خط أفقي يأتي فوقه المقسوم ويأتي تحته المقسوم عليه. على سبيل المثال، يُشار إلى قسمة a على b بما يلي:
\frac ab
قد يُشار إلى عملية القسمة بكتابة كل من المقسوم(أو البسط) والمقسوم عليه(أو المقام) في سطر واحد، جاء بينهما خط أفقي مائل إلى اليمين (/), كما يلي:
a/b\,
تلك هي الطريقة المستعلة في معظم لغات برمجة الحاسوب للتعبيير عن القسمة. يعود ذلك إلى بساطة ضرب حرف / في الحاسوب، لكونه حرفا موجودا وشائعا في الأسكي.
ab

حساب القسمة[عدل]


خوارزمية القسمة[عدل]


قسمة الأعداد الصحيحة[عدل]

مجموعة الأعداد الصحيحة غير منغلقة تحت عملية القسمة. يعود ذلك إلى أن قسمة عدد صحيح ما على عدد صحيح آخر مختلف عن الصفر, لا تعطي بالضرورة عددا صحيحا، إلا إذا كان المقسوم مضاعفا للمقسوم عليه. على سبيل المثال، 26 لا يمكن أن تقسم على 11 وأن تعطي عددا صحيحا. في هاته الحالة، تُختار واحدة من المقاربات الخمس التالية:

قسمة الأعداد النسبية[عدل]

قسمة عددين نسبيين تعطي عددا نسبيا آخر حين يكون المقسوم عليه مختلفا عن الصفر.
تعرف قسمة العددين النسبيين p/q و r/s كما يلي:
{p/q \over r/s} = {p \over q} \times {s \over r} = {ps \over qr}.
قسمة الكسور تعنى ضرب المقسوم في مقلوب المقسوم عليه.

القسمة على الصفر[عدل]

القسمة على الصفر هي عملية غير معرفة. وسبب ذلك هو أنه إذا ضُرب الصفر في عدد ما، فإن النتيجة تساوي دائما الصفر.

قسمة الأعداد العقدية[عدل]

قسمة عددين مركبين تعطي عددا مركبا ثالثا عندما يكون المقسوم عليه مختلفا عن الصفر، يُعرف كما يلي:
{p + iq \over r + is} = {p r + q s \over r^2 + s^2} + i{q r - p s \over r^2 + s^2}.

قسمة متعددات الحدود[عدل]

قسمة المصفوفات[عدل]

تتمثل الطريقة الأكثر انتشارا من أجل تعريف قسمة المصفوفات فيما يلي: A / B = AB−1 حيث B−1 هي معكوس المصفوفة B.
انتشار استعمال AB−1 يفوق بكثير أي استعمال آخر.

القسمة في الجبر التجريدي[عدل]

القسمة والاشتقاق[عدل]

يُعطى اشتقاق قسمة دالة ما على دالة أخرى فيما يلي:
{\left(\frac fg\right)}' = \frac{f'g - fg'}{g^2}.
تُعرف هاته القسمة باسم قاعدة ناتج القسمة.

أولويات القسمة[عدل]

لكل عملية قسمة أولويات وهي :[1]
أحيانا يأتي باق في القسمة حيث يكون العددان لايقبلان القسمة على بعضهما.
فمثلا : 6 ÷ 2 = 3 فإن 6 المقسوم، 2 المقسوم عليه، 3 خارج القسمة.
لايمكن تغيير هذا الترتيب أبدا وإلا فسيتغير ناتج القسمة.

أشكال عمليات القسمة[عدل]

أشكال عمليات القسمة ثلاث وهى :
1- المقسوم والمقسوم عليه وبينهم علامة (÷) : وهى مثل 10 ÷ 5 وتستخدم في القسمة بين رقمين.
2- الكسر : وتوضع في صورة كسر إعتيادى فالمقسوم هو البسط والمقسوم عيه هو المقام مثل : 3/6 = 2.
3- المسودة : وتستخدم في القسمة الكبيرة مثل قسمة 5 أعداد على عددين.

أنواع القسمة[عدل]

  1. القسمة البسيطة وهى التي تكتب في صورة مقسوم وعلامة ÷ ومقسوم عليه أو في صورة كسر.
  2. القسمة المطولة : وهى تكتب في صورة مسودة ويكون المقسوم والمقسوم عيه كبيران
وهذين النوعين يندرجان تحت :
1- قسمة منتهية : وهى التي لاتترك بواقى
2- قسمة غير منتهية : وهى التي تترك بواقى وهذا لأن المقسوم والمقسوم عليه قابلان القسمة على بعضهما

العلاقة بين القسمة والضرب[عدل]

كما للجمع علاقة مع الطرح, فإن للضرب علاقة مع القسمة وكل عملية ضرب ينتج عنها عمليتا قسمة فمثلا :
x × y == z، z ÷ x = y أيضا : z ÷ y == x
ولتجربتها مع الأعداد :
2 × 3 == 6، 6 ÷ 2 = 3 أيضا 6 ÷ 3 == 2
وبهذه العلاقة يمكن أن نحل عمليات القسمة فمثلا 10 ÷ 2 فإننا نقول ما الذي إذا ضرب في 2 ينتج 10 فسيكون الناتج 5 إذا 10 ÷ 2 = 5.
يجب عند حل مسائل القسمة أن نعرف جدول الضرب [1]

حل القسمة المطولة[عدل]

LongDivisionAnimated.gif
يمكن حل كل مسائل القسمة عبر طريقة المسودة وهى تشبه حرف Z حيث المقسوم على يسارها والمقسوم عليه على يمينها وخارج القسمة على رأسها وتحل كالآتى :
1- عند القسمة نقسم من ناحية اليسار ونبدأ بالعدد الأول ونقسمه على كل المقسوم عليه فإن لم يكن عددا صحيحا أخذنا العدد الذي على يمينه معه فمثلا إذا كانت 3 لاتعطى عددا صحيحا عند قسمتها على المقسوم عليه وعلى يمينها 2 فإننا نأخذ العددين ويصبح23 [1]
2- عند الفروغ من عملية القسمة نتأكد من الناتج فنضرب خارج القسمة في المقسوم ونضع الناتج تحت أعداد المقسوم عليه التي تم استهلاكها.
3- نطرح ونضع الناتج وننزل عددا مع ناتج الطرح وإن لم ينفع القسمة نأخذ عددا آخر ونقسمه على العدد المتبقى وهكذا حيث تنتهى عملية القسمة بطرح وإنزال الباقى

ملحوظة[عدل]

  • يكون الباقى في القسمة المنتهية صفر.
  • لتحويل القسمة غير المنتهية إلى منتهية نطرح الباقى من المقسوم عليه ونقسم مرة أخرى
  • في خوارزمية القسمة المطولة يكون فسمة المتغير الأول في المقسوم الا.

قابلية القسمة[عدل]

للأعداد علاقة مع بعضهم عن طريق القسمة والمقصود بها (أن من العلاقة بين عددين أن يقبلا القسمة مع بعضهم أو لا يقبلا) والقابلية المقصود بها نتوج عدد صحيح من خلال قسمة العددين على بعضها فمثلا العلاقة بين 5، 10 علاقة قابلية لأن 10 تقبل القسمة على 5 وينتج منهما عدد صحيح أولا وهو 2 وهناك خاصيتان تتوجدا بين العددين الذين يقبلان القسمة على بعضهما :
  1. أن يكون أحد العددين من مضاعفات العدد الآخر مثل العدد 5 ومضاعفه.25
  2. أن يكون أحد العددين من عوامل العدد الآخر مثل العدد 6 وعامله 3 [1]
ولكن ليس هذا فقط، بل يوجد أعداد لها خواص غير ذلك مثل :
العدد 5 وهو أن كل عدد يبدأ بصفر أو بخمسة يكون من مجموعة الأعداد التي تقبل عليها 5 القسمة وهى {5، 10، 15، 20، 25، 30...} العدد 3 وهو أن كل عدد مجموعه = 3 يقبل القسمة على 3 فورا مثل 21 مجموعه يساوى 3 ويقبل القسمة عليه.
العدد 2 وهو أن كل عدد رقم آحاده يساوى عدد زوجى فإنه يقبل القسمة على 2
كل هذه الأعداد مضاعفاتها وعواملها يقبلان القسمة عليها بجانب ماسبق ذكره

نتيجة[عدل]


مجموعة الأعداد الطبيعية غير منغلقة تحت عملية القسمة. بالإضافة إلي ذلك، عملية القسمة ليست تجميعية وليست تبديلية